Simulating electric field interactions with polar molecules using spectroscopic databases
نویسندگان
چکیده
Ro-vibrational Stark-associated phenomena of small polyatomic molecules are modelled using extensive spectroscopic data generated as part of the ExoMol project. The external field Hamiltonian is built from the computed ro-vibrational line list of the molecule in question. The Hamiltonian we propose is general and suitable for any polar molecule in the presence of an electric field. By exploiting precomputed data, the often prohibitively expensive computations associated with high accuracy simulations of molecule-field interactions are avoided. Applications to strong terahertz field-induced ro-vibrational dynamics of PH3 and NH3, and spontaneous emission data for optoelectrical Sisyphus cooling of H2CO and CH3Cl are discussed.
منابع مشابه
Electrostatic Trapping of Ultracold Polar Molecules
This thesis describes the progress made in the production, spectroscopic characterization, and confinement of ultracold, polar NaCs molecules. A two-species magneto-optical trap (MOT) for the simultaneous cooling and trapping of sodium and cesium atoms is utilized for the creation of ultracold NaCs molecules via photoassociation. The molecules are detected via resonance-enhanced multi-photon io...
متن کاملAnalysis of Electric Field and Polarization of SF6 Circuit Breaker to Approach a Suitable Structure
Abstract: The application of electric field theory to widely different aspects of electrical insulation has led to more understanding the phenomena. Electric fields may be considered as the main reason for insulation failure. The purpose of this paper is to modify importance of analyzing electric field in insulation design. The SF6 circuit breaker is chosen as case study that encounters cri...
متن کاملEntanglement of polar symmetric top molecules as candidate qubits.
Proposals for quantum computing using rotational states of polar molecules as qubits have previously considered only diatomic molecules. For these the Stark effect is second-order, so a sizable external electric field is required to produce the requisite dipole moments in the laboratory frame. Here we consider use of polar symmetric top molecules. These offer advantages resulting from a first-o...
متن کاملAn ultracold gas of CsYb molecules in an optical lattice: A toolbox for quantum simulation
The goal of this project is to form a gas of ground-state polar molecules in an optical lattice, with each molecule interacting with its neighbours via controlled electric dipole and spin-spin interactions. This would constitute a rich and versatile system capable of simulating lattice-spin models that are ubiquitous in condensed matter physics [1]. The same system could also be used for proces...
متن کاملNanoscopic friction under electrochemical control.
We propose a theoretical model of friction under electrochemical conditions focusing on the interaction of a force microscope tip with adsorbed polar molecules whose orientation depends on the applied electric field. We demonstrate that the dependence of friction force on the electric field is determined by the interplay of two channels of energy dissipation: (i) the rotation of dipoles and (ii...
متن کامل